Cloning and Characterization of a Novel Vacuolar Na+/H+ Antiporter Gene (Dgnhx1) from Chrysanthemum
نویسندگان
چکیده
Plant vacuolar Na(+)/H(+) antiporter genes play significant roles in salt tolerance. However, the roles of the chrysanthemum vacuolar Na(+)/H(+) antiporter genes in salt stress response remain obscure. In this study, we isolated and characterized a novel vacuolar Na(+)/H(+) antiporter gene DgNHX1 from chrysanthemum. The DgNHX1 sequence contained 1920 bp with a complete open reading frame of 1533 bp encoding a putative protein of 510 amino acids with a predicted protein molecular weight of 56.3 kDa. DgNHX1 was predicted containing nine transmembrane domains. Its expression in the chrysanthemum was up-regulated by salt stress, but not by abscisic acid (ABA). To assess roles of DgNHX1 in plant salt stress responses, we performed gain-of-function experiment. The DgNHX1-overexpression tobacco plants showed significant salt tolerance than the wild type (WT). The transgenic lines exhibited more accumulation of Na(+) and K(+) under salt stress. These findings suggest that DgNHX1 plays a positive regulatory role in salt stress response.
منابع مشابه
Assessment of the vacuolar Na+/H+ antiporter (NHX1) transcriptional changes in Leptochloa fusca L. in response to salt and cadmium stresses
Sodium/proton exchangers (NHX) are key players in plant responses to salinity and have a central role in establishing ion homeostasis. NHXs can be localized in tonoplast or plasma membranes, where they exchange sodium ions for protons, resulting in the removal of ions from the cytosol into vacuole or extracellular spaces. In the present study, the expression pattern of the gene encoding Na+/H+ ...
متن کاملImproved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1
A significant portion of the world’s cultivated land is affected by salinity that reduces crop productivity in these areas. Breeding for salt tolerance is one of the important strategies to overcome this problem. Recently, genetic engineering is becoming a promising approach to improving salt tolerance. In order to improve the yield performance of canola in saline soils, we transformed canola w...
متن کاملMolecular characterization of a novel Na⁺/H⁺ antiporter cDNA from Eucalyptus globulus.
Environmental stress factors such as salt, drought and heat are known to affect plant productivity. However, high salinity is spreading throughout the world, currently affecting more than 45 millionha. One of the mechanisms that allow plants to withstand salt stress consists on vacuolar sequestration of Na(+), through a Na(+)/H(+) antiporter. We isolated a new vacuolar Na(+)/H(+) antiporter fro...
متن کاملTopological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity.
We conducted an analysis of the topology of AtNHX1, an Arabidopsis thaliana vacuolar Na+/H+ antiporter. Several hydrophilic regions of the antiporter were tagged with a hemagglutinin epitope, and protease protection assays were conducted to determine the membrane topology of the antiporter by using yeast as a heterologous expression system. The overall structure of AtNHX1 is distinct from the h...
متن کاملCloning and Functional Characterization of a Vacuolar Na+/H+ Antiporter Gene from Mungbean (VrNHX1) and Its Ectopic Expression Enhanced Salt Tolerance in Arabidopsis thaliana
Plant vacuolar NHX exchangers play a significant role in adaption to salt stress by compartmentalizing excess cytosolic Na+ into vacuoles and maintaining cellular homeostasis and ionic equilibrium. We cloned an orthologue of the vacuolar Na+/H+ antiporter gene, VrNHX1 from mungbean (Vigna radiata), an important Asiatic grain legume. The VrNHX1 (Genbank Accession number JN656211.1) contains 2095...
متن کامل